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Re-Evaluating the Northeastern Minnesota
Moose Decline and the Role of Wolves
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ABSTRACT We re-evaluated findings from Lenarz et al. (2009) that adult moose (Alces alces) survival in
northeastern Minnesota was related to high January temperatures and that predation by wolves (Canis lupus)
played a minor role. We found significant inverse relationships between annual wolf numbers in part of the
moose range and various moose demographics from 2003 to 2013 that suggested a stronger role of wolves
than heretofore believed. To re-evaluate the temperature findings, we conducted a simulation study,
mimicking the approach taken by Lenarz et al. (2009), to explore the potential for concluding a significant
relationship exists between temperature and survival, when no association exists. We found that the high R2s
and low probabilities associated with the regression models in Lenarz et al. (2009) should be viewed
cautiously in light of the large number of fitted models (m¼ 45) and few observations (n¼ 6 for each of 5
response variables). Published 2014. This article is a U.S. Government work and is in the public domain in
the USA.
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A moose (Alces alces) population that has long inhabited
northeastern Minnesota has been declining since 2006, and
considerable research has been ongoing to determine the
cause(s) of the decline (Lenarz et al. 2009, 2010; DelGiudice
et al. 2011). Climate change has been implicated as playing a
leading role in the recent moose declines in Minnesota
(Murray et al. 2006, Lenarz et al. 2009). For example,
temperatures above a critical threshold in January were found
to explain >78% of the variability in estimated spring, fall,
and annual moose survival rates (Lenarz et al. 2009). Lenarz
et al. (2010:1020) analyzing the same data considered that
“Although it is premature to conclude that climate change is
ultimately responsible for the decline of moose in
northeastern Minnesota, it is clear that proximate sources
of mortality, independent of climate change, probably played
a minor role in their decline.” This conclusion is consistent
with the authors’ attribution of only 5 deaths to wolf
predation out of the 85 radio-collared adult male and female
moose that died during the study. However, 18 scavenged
carcasses and 7 mortalities that could not be examined
(Lenarz et al. 2009) could have been killed by wolves. A
secondary reason Lenarz et al. (2009, 2010) considered
wolves to have played a minor role in the moose decline is
that they believed that wolf numbers had remained constant
from 2000 to 2010.

This assumption, however, needs elaboration. The wolf
numbers Lenarz et al. (2010) referred to as being constant
were statewide, not specific to the study area and were
estimated 5 years apart with wide confidence intervals
(Erb 2008, Erb and DonCarlos 2009). In actuality, wolf
numbers in an area that overlaps the Lenarz et al. (2010)
study area by 20% (Fig. 1) had increased after the year 2000
to the highest levels in 40 years (Mech 2009; L. D.
Mech, U.S. Geological Survey, unpublished data), after
having just gained resistance to canine parvovirus (Mech
et al. 2008).
Wolves can reduce moose populations in the region, as

well-documented in Isle Royale National Park 98 km from
the northeastern Minnesota study area and at the same
latitude (Peterson et al. 1984), and wolves regularly prey on
moose in northeastern Minnesota (Mech and Nelson 2013).
In several areas, predation on calves limits moose populations
(Larsen et al. 1989, Testa et al. 2000, Bertram and
Vivion 2002). The extent to which northeastern Minnesota
wolves prey on moose calves during summer is unknown,
although moose calves do form part of their diet there
(Frenzel 1974, Van Ballenberghe et al. 1975); the Minnesota
Department of Natural Resources has been conducting adult
and calf mortality studies that will shed further light on
possible causes of the moose decline (Severud et al. 2012).
During the moose-population decline in the Lenarz et al.
(2009, 2010) study area and the wolf increase in our wolf-
survey area, the proportion of moose calves decreased steadily
(Lenarz et al. 2010). Furthermore, in at least the northern
part of the Lenarz et al. (2009, 2010) study area, the primary
prey of northeastern Minnesota wolves—the white-tailed
deer (Odocoileus virginianus)—are almost non-existent
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(Mech and Karns 1977, Nelson and Mech 2006), so moose
and beavers (Castor canadensis) are the wolves’ only important
prey there. Adult moose survival was also unusually low
during the decline (Lenarz et al. 2010). The degree to which
wolves caused adult mortality was unknown but could have
been as high as 55% of the non-anthropogenic mortality if all
scavenged carcasses were included (Lenarz et al. 2009). A
further consideration is that wolves sometimes only injure
moose that might die later of complications from the attack
(Mech 1966), which would leave little evidence of wolf
predation on a scavenged carcass.
Thus to gain insights into any possible effect of wolves on

moose numbers in northeasternMinnesota, we examined the
relationships between wolf numbers in the wolf-survey area
and various aspects of moose demographics in the region
surrounding that area. Given the possible important role
wolves might have had in the moose decline, we also re-
evaluated the earlier findings that related declining moose
survival to temperature (Lenarz et al. 2009).

NORTHEASTERN MINNESOTA STUDY
AREAS

The wolf-survey area encompassed some 2,060 km2 imme-
diately east of Ely in the east-central Superior National
Forest (488N, 928W; Fig. 1). The area represents only about
3% of the total range of wolves in Minnesota. The following
description of this area is verbatim fromMech (2009:16–17).

“Topography in the study area varies from large stretches of
swamps and uneven upland to rocky ridges, with elevations
ranging from 325 to 700m above sea level. Winter
temperatures below �358C are not unusual, and snow
depths (usually from mid-November through mid-April)
generally range from 50 to 75 cm on the level. Summer
temperatures rarely exceedþ358C. Conifers predominate in
the forest overstory, including jack pine (Pinus banksiana),
white pine (P. strobus), red pine (P. resinosa), black spruce
(Picea mariana), white spruce (P. glauca), balsam fir (Abies
balsamea), white cedar (Thuja occidentalis), and tamarack
(Larix laricina). However, as a result of extensive cutting and
fires, much of the coniferous cover is interspersed with large
stands of white birch (Betula papyrifera) and aspen (Populus
tremuloides). Heinselman (1993) presented a detailed
description of the forest vegetation.”
The only significant prey of wolves in the wolf-survey area

are deer and moose, with beavers available primarily from
May through November, similar to the rest of northeastern
Minnesota. In the northeastern half of the wolf-survey area,
as well as immediately north and east of it, the overwintering
population of white-tailed deer was extirpated by about 1975
by a combination of severe winters, maturing vegetation, and
high numbers of wolves (Mech and Karns 1977), and the area
has remained devoid of wintering deer ever since (Nelson and
Mech 2006). Moose inhabit the entire area but occur at a
higher density in the northeastern half. Beavers live
throughout the area.

Figure 1. Moose-survey area. The Lenarz et al. (2009, 2010) studies were conducted in the moose-collar area. Wolves throughout the moose-survey area feed
onmoose, but in the part of the wolf-survey area where wolves are on amoose economy, moose constitute the only available prey during winter, with beavers and
a few white-tailed deer available during the rest of the year. The locations of the moose-count plots vary by year, with those indicated here representing the
distribution for only 2013 as an example.
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The moose-survey area encompassed 15,500 km2 of
northeastern Minnesota (Giudice et al. 2012) that also
included the wolf-survey area. Lenarz et al. (2009, 2010)
radio-collared moose in an area that included approximately
the southeastern 40% of the wolf-survey area, plus a large
region east and south of the wolf-survey area encompassed by
the moose-survey area (Fig. 1). Both the moose-collaring
area and the moose-survey area are generally of the same
basic habitat as described above for the wolf-survey area.
However both moose and deer densities vary considerably
throughout the larger moose-survey area, with fewer deer in
the northeastern parts of both the wolf-survey and moose-
collaring area (Nelson and Mech 2006, DelGiudice 2013;
Fig. 1).

EVALUATING THE WOLF AND
TEMPERATURE DATA

To assess the relationships between the population
trajectories of the wolves and moose, we used published
wolf numbers from 1997 to 2007 (Mech 2009) and L. D.
Mech (unpublished data) from 2008 to 2012 (Table 1) in

simple-linear regressions with the following moose data: 1)
moose-count data from 1997 to 2003 (Lenarz 2006) and
2005 to 2013 (no data available for 2004; DelGiudice 2013);
2) adult-moose-survival data from Lenarz et al. (2009); and
3) calf:cow ratios in the moose-survey area from 1984 to 2013
(Lenarz 1998, 2006; DelGiudice 2013). We considered calf:
cow ratios to be approximate because of the difficulty of
distinguishing cows from bulls during winter, so we also used
available calf:population data (2004–2011).We used the calf:
population data from the entire moose-survey area as well as
from the wolf-survey area combined with an equal-sized area
just to the south of there. R. A. Moen (University of
Minnesota Duluth, personal communication) after personal
communication with M. S. Lenarz (Minnesota Department
of Natural Resources) selected the latter area for us to
generate a larger sample that was also representative of the
wolf-survey area. The regressions between wolf numbers and
adult moose included counts in the same winters. The
regressions with calf ratios involved wolf numbers during the
winters preceding the calf ratios because those wolf numbers
would be most relevant to calves born the following spring.

Table 1. Wolf numbers in a 2,060-km2 survey area of northeastern Minnesota 1997–2012 (Mech 2009; L. D. Mech, U.S. Geological Survey, unpublished),
annual moose estimates and calf:population ratios in the moose-survey area, and calf:cow ratios in the wolf-survey area and an equal-sized area just south of
there and in the moose-survey area (Lenarz 1998, 2006, 2008; DelGiudice 2013; M. S. Lenarz, Minnesota Department of Natural Resources, personal
communication).

Year

Wolves Moose survey dataa

Calf:cow

Calf:population

Wolf-survey area NE moose economy areab Point estimate 90% CI Wolf-survey areac Moose survey area

1984 35 0.43
1985 54 0.57
1986 47 0.75
1987 48 0.65
1988 59 0.64
1989 79 0.39
1990 51 0.3
1991 56 0.45
1992 53 0.53
1993 55 0.55
1994 55 0.62
1995 55 0.9
1996 69 0.52
1997 56 3,960 (1,386–5,346) 0.49
1998 55 3,464 (1,247–4,711) 0.71
1999 50 3,915 (1,370–5,285) 0.57
2000 44 3,733 (933–4,666) 0.7
2001 52 3,879 (1,086–4,965) 0.61
2002 53 5,214 (1,199–6,413) 0.93
2003 58 31 4,161 (1,540–5,701) 0.7
2004 62 26 0.42
2005 74 35 8,160 (5,960–11,170) 0.52 0.28 0.17
2006 81 49 8,840 (6,670–11,710) 0.34 0.27 0.23
2007 81 41 6,860 (5,230–9,000) 0.29 0.31 0.17
2008 84 39 7,890 (5,970–10,420) 0.36 0.2 0.14
2009 97 7,840 (6,190–9,910) 0.32 0.17 0.18
2010 91 5,700 (4,480–7,250) 0.28 0.2 0.15
2011 82 4,900 (3,810–6,290) 0.24 0.12 0.15
2012 92 4,230 (3,190–5,600) 0.36 0.14 0.15
2013 2,760 (2,120–3,580) 0.33

a Data collection methods and adjustments for visibility bias differed between 1997–2003 (fixed-wing aircraft, double-sampling) and 2005–2013 (helicopter,
sightability model).

b In northeastern part of wolf-survey area where wolves prey primarily on moose.
c For the wolf-survey area and an equal-sized area directly south of there.
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For example, we regressed wolf numbers for winter 2002–
2003 with calf:population ratios obtained in January 2004,
which reflected predation since spring 2003. The wolf data
were based primarily on complete winter counts of radio-
tagged wolves and their packs, although numbers from a few
non-radioed wolves in the same standard study area were
estimated from tracks or occasional winter aerial observations
of the wolves as described earlier (Mech 2009).
The moose data were based on winter observations from

fixed-wing aircraft from 1997 to 2003 and helicopter from
2005 to 2013. Counts from the fixed-wing surveys were
adjusted for non-detection using a double-sampling proce-
dure (Gasaway and DuBois 1987, Lenarz 1998). By contrast,
counts from the helicopter surveys were adjusted for non-
detection using a sightability model developed using
radiocollared animals (Steinhorst and Samuel 1989,
Fieberg 2012, Giudice et al. 2012). Although the change
in survey methods makes it difficult to compare data from the
2 different periods, the data within each period provide
estimates of moose-population trend (M. S. Lenarz, personal
communication). Each year’s moose point estimate has large
and variable confidence limits (Table 1, Giudice et al. 2012,
DelGiudice 2013, Fieberg et al. 2013).
To re-evaluate the temperature findings (Lenarz

et al. 2009), we conducted a simple simulation study,
mimicking the approach taken by Lenarz et al. (2009), to
explore the potential for type I error – i.e., concluding there is
a significant relationship between temperature and survival,
when no association exists. Survival estimates from Table 2
of Lenarz et al. (2009) ranged from 0.86 to 0.99 in the spring
and fall and from 0.91 to 1 in the summer and winter. To
reflect these values, we generated survival rates using a
continuous, uniform, random-number generator with
support on the (0.8, 1) interval (spring and fall) or (0.9,
1) interval (in summer and winter). We determined annual
survival as the product of the survival rates in each of the 4
seasons. We generated a set of 9 predictor variables,
representing different temperature measurements, using a

multivariate, normal random-number generator, via the
mvrnorm function in the MASS library of Program R
(Venables and Ripley 2002, R Core Team 2013). We set the
means and standard deviations of the random-number
generator to the values reported for the temperature variables
in Table 3 of Lenarz et al. (2009) excluding “LS14M.”
“LS20M,” and “WS20M;” these latter 3 statistics exhibited
little variability and were thus not considered in the original
analyses conducted by Lenarz et al. (2009). We set the pair-
wise correlations among all predictor variables equal to 0.7
(scenario A) but repeated the analyses with all pairwise
correlations equal to 0.1 (scenario B) to capture a range of
plausible variables.
We fit a linear-regression model to each combination of

survival rate (4 seasons, annual) and simulated temperature
measurement (9 variables), for a total of 9� (4þ 1)¼ 45
models. Importantly, the predictors were generated inde-
pendent of the response variables. Thus, any relationships
detected in the simulated data are spurious. We repeated the
data generation and model-fitting processes 1,000 times. For
each simulation, we recorded the R2 and P-value for each
fitted model as well as the maximum R2 and minimum P-
value across the 45 candidate models. Lastly, we counted the
number of models that had an R2> 0.5. We overlaid the
values of these statistics (maximum R2, minimum P-value,
and number of models with R2> 0.5) from Lenarz et al.
(2009) on the sampling distributions for these statistics
obtained from the simulation study under the null hypothesis
that survival is independent of temperature (Fig. 2).

THE ROLES OF WOLVES AND
TEMPERATURE

Both wolf and moose numbers fluctuated considerably
during the study, with wolf numbers in the 2,060-km2 wolf-
survey area varying between 44 and 97 (21–47 per 1,000 km2)
and moose numbers from 3,960 to 5,214 from 1997 to 2003
and 2,760 to 8,840 from 2005 to 2013 (Table 1). Calf:cow
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Figure 2. Summary statistics from 1,000 simulations, mimicking the data collection and analysis approach taken in Lenarz et al. (2009). In each case, we
simulated 6 years of survival and temperature data. Specifically, we generated 9 temperature variables, representing different characterizations of heat stress,
from a multivariate normal distribution in which predictors had pairwise correlations of 0.7. We then generated 5 sets of survival estimates, representing the
4 seasons and annual survival, independent of the temperature data. Thus, the simulated data were consistent with the null hypothesis that temperature and
survival were not correlated. We then fit a linear regression model to all 45 combinations of predictor (temperature) and response (survival) variables.
Histograms display the null sampling distribution (across the 1,000 simulations) of: A) the maximumR2 among the 45models, B) the minimum P-value among
the 45 models, and C) the number of models that had an R2> 0.5. Results from Lenarz et al. (2009) are given by vertical dashed lines.
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ratios varied from 0.24 to 0.93 and calf:population ratios
(2004–2011) from 0.12 to 0.31.
From 1997 through 2003, wolf and moose numbers were

unrelated (P¼ 0.86). However, from 2005 to 2013, moose
numbers were inversely correlated with wolf numbers the
year previous (R2¼ 0.44; P¼ 0.05). Annual moose survival
from 2002 to 2007 of a sample of radio-collared moose
(Lenarz et al. 2009) was weakly inversely related to wolf
numbers (R2¼ 0.48; P¼ 0.12) in the part of the wolf-survey
area where wolves prey primarily on moose and which
overlaps the moose-survey area. Calf:cow ratios in relation to
wolf numbers varied considerably from 1984 through 2013
(Fig. 3). From 1984 to 2000, the calf:cow ratio was weakly
related inversely to the previous winter’s wolf numbers
(R2¼ 0.21; P¼ 0.07), whereas from 2001 to 2013, the
inverse relationship was much stronger (R2¼ 0.68;
P< 0.0001). Calf:population ratios from 2004 through
2011 for the wolf-survey area and adjacent area just south
of it were inversely related to wolf numbers the winter before
(R2¼ 0.75; P< 0.01), as were the ratios from the entire
moose-survey area (R2¼ 0.43; P¼ 0.08).
Although the response data in our simulation were

generated independent of the predictors, at least 1 model
was statistically significant (i.e., P< 0.05) in 70% of the
simulations under scenario A (pairwise correlations among
predictor variables equal to 0.7). Type I error rates were
higher under scenario B (pairwise correlations equal to 0.1),
with 87% of the simulations producing a significant result.
Further, mean maximum R2 values were 0.73 (scenario A)
and 0.79 (scenario B), where the maximum is taken with
respect to the 45 models, fit to each simulated data set, and
the mean is taken over the 1,000 simulations. Lastly,
although the results from Lenarz et al. (2009) are in the tails
of the null sampling distribution (Fig. 2), they are not at all
extreme. In fact, generating temperature and survival rates
independently resulted in models with more highly signifi-
cant P-values and R2 in 14% (scenario A) and 16% (scenario
B) of the simulations.

WHY ARE MINNESOTA MOOSE
NUMBERS DECLINING?

The correlations we found between various moose param-
eters and wolf numbers in overlapping study areas for the
period of the moose decline suggest that an increasing wolf
population may have contributed at least partly to the moose
decline. Although the wolf-population trend in the wolf-
survey area does not necessarily represent that in the entire
moose-survey area, it is likely more representative of the
wolf-population trend in northeasternMinnesota than in the
entire state. The relationships we found are consistent with a
hypothesis that from 1997 to about 2003 annual moose
numbers were relatively unaffected by wolves and that wolf
numbers tended to parallel moose numbers. However,
starting in about 2004, after wolves increased 41% from 44 in
2000 to 62 in 2004 and 84% to 81 in 2006, moose numbers
began declining. The moose-population estimate was
inversely related to the number of wolves each year. The
strongest relationship was between wolf numbers 1 year and
the calf: population ratio the next year, explaining 75% of the
calf population variance. Furthermore, the annual calf
survival of 0.40 in northeastern Minnesota (Lenarz
et al. 2010) during 2002–2008 was about 63% of that of
eastern Ontario, where wolf density was about 67% of the
density in northeastern Minnesota (Patterson et al. 2013).
Thus, even though there appeared to be evidence of a

climate-change relationship to moose survival from 2002 to
2008 (Lenarz et al. 2009), the increased temperatures used in
the analyses coincided with an increasing wolf population.
Could the significant relationship Lenarz et al. (2009) found
of moose-population decline to high temperatures be a
correlate of wolf predation rather than the cause of the
variation in adult-moose survival? Recent and prior studies
linking ambient temperatures to increased metabolism,
heart, and respiration rates in moose (Renecker and
Hudson 1986, 1990; McCann et al. 2013) provide a
mechanistic basis and explanation for the relationships
between temperature and survival reported in Lenarz et al.
(2009). Nonetheless, the high R2 values and low P-values
associated with the regression models summarized in Table 4
of Lenarz et al. (2009) should be viewed cautiously in light of
the large number of fitted models (m¼ 45) and small number
of observations (n¼ 6 for each of 5 response variables;
Fig. 2). Similar to stepwise model-selection procedures,
there are hidden costs associated with looking at a large
number of models. A reasonable guideline when fitting
models to a single response variable is that one should limit
the number of candidate degrees of freedom (i.e., number of
predictors considered in all fitted models) to< n/10 to n/20
(Harrell 2001). Lenarz et al. (2009) considered 9 different
temperature variables in conjunction with each model
response, whereas this guideline would suggest considering
at most 1 (i.e., n/10¼ 3/5). As our simulation results
illustrate, the likelihood of making a type I error increases as
one considers additional (related) response variables.
Although our analyses were also motivated by and

grounded in ecological theory, we recognize that some of
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Figure 3. Wolf numbers in a 2,060-km2 wolf-survey area of northeastern
Minnesota, 1983–2012 (Mech 2009; L. D. Mech, U. S. Geological Survey,
unpublished data) and calf:cow ratio in that area and an equal-sized area just
south of there (Lenarz 1998, 2006, 2008; DelGiudice 2013; M. S. Lenarz,
Minnesota Department of Natural Resources, personal communication).
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the same criticisms (i.e., high potential for type I error) may
limit the strength of our inferences regarding the role of
wolves in the moose decline. We also considered 7 different
1-variable regression models, with sample sizes ranging from
6 to 16 (i.e., n/10 ranged from 3/5 to 1 3/5). At minimum
however, the present findings raise the possibility that
proximate causes of mortality (e.g., wolf predation) may play
a larger role in the moose decline than previously thought.
Wolf predation does not always reduce moose numbers as
evidenced by the lack of a relationship between wolf and
moose numbers from 1997 through 2003 and by other
studies (Peterson et al. 1998, Mech and Peterson 2003).
However, when predisposing factors such as adverse snow
conditions prevail, wolves can reduce moose populations
(Peterson and Allen 1974).
One common factor that predisposes adult moose to wolf

predation is old age (Mech 1966, Mech et al. 1998, Peterson
et al. 1998, Lenarz et al. 2010, Mech and Nelson 2013). In a
relatively stable moose population, each year a certain older
cohort would begin reaching an age vulnerable to wolf
predation. If relatively low wolf density such as predomi-
nated from about 1997 to 2002 in the wolf-survey area
allowed high calf survival for several consecutive years, then
8–12 years later a large proportion of the moose population
would reach the age vulnerable to wolves. If that vulnerable
period corresponded to years of high wolf density such as
after 2005, the combination of a high proportion of old
moose and heavy predation on calves could cause a drop in
moose numbers. This possibility may not be a suitable
explanation for the northeastern Minnesota moose decline
because the adult moose that died in the Lenarz (2010) study
included several that were of younger and medium ages.
Nevertheless in searching for a cause or causes of a moose
decline, it will be important to examine any available data on
moose age, including live-captured or hunter-killed moose.
Other factors predisposing adult moose to wolf predation

could be physiological or pathological such as poor
nutritional condition, hydatid cysts (Echinoccocus granulosus),
arthritis (Mech 1966, Peterson 1977), possibly ambient
temperature-related problems (Lenarz et al. 2009, 2010), or
unknown conditions. Several such problems recently plagued
moose in northwestern Minnesota (Murray et al. 2006).
Wolf predation is one of the primary, proximate mortality

factors of moose calves (Larsen et al. 1989, Testa et al. 2000,
Patterson et al. 2013), and the relatively strong, inverse
relationship we found between wolf density 1 year and calf:
population ratio the next year suggests that this relationship
played a role in the recent northeastern Minnesota moose
decline. Little is known about factors that might influence or
predispose moose calves to predation by wolves, but generally
the higher the wolf density, the more calves would be taken.
Wolf-population density in the wolf-survey area was able

to remain high even as moose numbers were declining
because throughout much of the wolf-survey area as well as
the larger moose-survey area, deer and beavers continued to
be available, probably subsidizing wolves while they also
preyed on declining numbers of moose. Some wolf packs
even occupied narrow territories stretching as far as 42 km

from the northeastern part of the wolf-survey area where few
deer live in summer and none in winter to the southwestern
part where deer live in summer and congregate in winter
(L. D. Mech and S. Barber-Meyer, U.S. Geological Survey,
unpublished data).
The possible role of any predisposing factor(s) in

promoting moose-population reduction by wolf predation
highlights the key question yet to be answered as to why
northeastern Minnesota’s moose began declining in 2006. In
seeking the answer, researchers need to appreciate that wolf
predation is as an ever-present potential contributor,
especially with calves. In 3,000-km2 of the northeastern
Minnesota moose range, wolf predation was one of the main
causes of a near extirpation of deer during a series of severe
winters between 1964 and 1974 (Mech and Karns 1977), and
30 years later, the deer population had not yet recovered
(Nelson and Mech 2006). Conceivably, a high wolf
population preying on moose calves, coupled with the usual
maladies that beset adult Minnesota moose (Murray
et al. 2006, Lenarz et al. 2009, DelGiudice et al. 2011)
that may predispose them to wolf predation, could reduce the
moose population. The Minnesota Department of Natural
Resources and the Bois Forte 1854 Authority have been
radio-collaring large samples of cow and newborn-calf moose
in northeastern Minnesota in an attempt to determine both
proximate and ultimate causes of mortality (G. D. DelGiu-
dice, Minnesota Department of Natural Resources, personal
communication). We recommend continuing such studies
along with the annual moose count as well as monitoring
annual wolf numbers in a larger portion of the northeastern
Minnesota moose range.
Temperature could still be a factor in the moose decline. As

Lenarz et al. (2010) noted, heat stress on cattle can negatively
affect food intake, body growth, milk production, and
reproduction (Hahn 1999) as well as immune response
(Kelley et al. 1982, Morrow-Tesch et al. 1996). Although
these factors could affect moose survival independently of
predation, they could also help predispose moose to
predation (Mech and Peterson 2003). Moose declines in
northwestern and northeastern Minnesota have coincided
with warmer-than-average temperatures. The role increased
temperatures might have played in determining ultimate and
proximate causes of mortality, however, remain to be
elucidated.

MANAGEMENT IMPLICATIONS

TheMinnesota Department of Natural Resources regulates a
public harvest of wolves throughout the 70,000-km2 wolf
range and has allowed annual quotas of 400 in 2012 and 220
in 2013. If current or future studies suggest that wolves
contribute importantly to the moose population decline, the
Minnesota Department of Natural Resources could allocate a
certain portion of its annual public-wolf-harvest quota to
part of the moose range and compare moose mortality and
numbers in that area with a similar experimental control area
where wolves are not taken. If that experiment confirms the
importance of wolves to the moose decline, we recommend
that the Minnesota Department of Natural Resources
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allocate an increased portion of the wolf-harvest quota to the
moose range until the moose population recovers.

ACKNOWLEDGMENTS

This study was funded by the United States Geological
Survey. The following critiqued earlier drafts of the
manuscript and offered helpful suggestions for improve-
ments: G. D. DelGiudice, M. S. Lenarz, R. A. Moen, M. E.
Nelson, M.W. Schrage, and J. Erb. Any use of trade, firm, or
product names is for descriptive purposes only and does not
imply endorsement by the U.S. Government.

LITERATURE CITED
Bertram,M. R., andM. T. Vivion 2002.Moose mortality in eastern Interior
Alaska. Journal of Wildlife Management 66:747–756.

DelGiudice, G. D. 2013. 2013 Aerial moose survey. Minnesota Department
of Natural Resources, St. Paul, Minnesota, USA: <files.dnr.state.mn.us/
recreation/hunting/moose/moose_survey_2013.pdf>.Accessed 20 Jan
2014.

DelGiudice, G. D., B. A. Sampson,M. S. Lenarz, M.W. Schrage, and A. J.
Edwards. 2011.Winter body condition of moose (Alces alces) in a declining
population in northeastern Minnesota. Journal of Wildlife Diseases
47:30–40.

Erb, J. 2008. Distribution and abundance of wolves in Minnesota, 2007–
2008. Minnesota Department of Natural Resources, St. Paul, Minnesota,
USA.

Erb, J., and M. W. DonCarlos 2009. An overview of the legal history and
population status of wolves in Minnesota. Pages 49–64 inA. P., Wydeven
T. R., Van Deelen, and E. J., Heske, editors. Recovery of gray wolves in
the Great Lakes region of the United States: an endangered species success
story. Springer, New York, New York, USA.

Fieberg, J. 2012. Estimating population abundance using sightability
models: R sightability model package. Journal of Statistical Software 51:1–
20.

Fieberg, J., M. Alexander, S. Tse, and K. St. Clair. 2013. Abundance
estimation with sightability data: a Bayesian data augmentation approach.
Methods in Ecology and Evolution 4:854–864.

Frenzel, L. D. 1974. Occurrence of moose in food of wolves as revealed by
scat analyses: a review of North American studies. Naturaliste Canadien
101:467–479.

Gasaway, W. C., and S. D. DuBois 1987. Estimating moose population
parameters. Swedish Wildlife Research (Supplement) 1:603–617.

Giudice, J., J. Fieberg, and M. Lenarz. 2012. Spending degrees of freedom
in a poor economy: a case study of building a sightability model for
moose in northeastern Minnesota. Journal of Wildlife Management
76:75–87.

Hahn, G. L. 1999. Dynamic responses of cattle to thermal heat loads.
Journal of Animal Science 77:10–20.

Harrell, F. E. Jr. 2001. Regression modeling strategies: with applications to
linear models, logistic regression, and survival analysis. Spring-Verlag,
New York, New York, USA.

Heinselman, M. 1993. The boundary waters wilderness ecosystem.
University of Minnesota Press, Minneapolis, Minnesota, USA.

Kelley, K. W., R. E. Greenfield, J. F. Evermann, S. M. Parish, and L. E.
Perryman. 1982. Delayed-type hypersensitivity, contact sensitivity, and
phytohemagglutinin skin-test responses of heat- and cold-stressed calves.
American Journal of Veterinary Research 43:775–779.

Larsen, D. G., D. A. Gauthier, and R. L. Markel. 1989. Causes and rate of
moosemortality in the southwest Yukon. Journal ofWildlifeManagement
53:548–557.

Lenarz, M. S. 1998. Precision and bias of aerial moose surveys in
northeastern Minnesota. Alces 34:117–124.

Lenarz, M. S. 2006. 2006 Aerial moose survey. Minnesota Department of
Natural Resources, St. Paul, Minnesota, USA: <files.dnr.state.mn.us/
recreation/hunting/moose/moose_survey_2006.pdf>. Accessed 20 Jan
2014.

Lenarz, M. S. 2008. 2008 Aerial moose survey. Minnesota Department of
Natural Resources, St. Paul, Minnesota, USA: <files.dnr.state.mn.us/
recreation/hunting/moose/moose_survey_2008.pdf>. Accessed 20 Jan
2014.

Lenarz, M. S., M. E. Nelson, M. W. Schrage, and A. J. Edwards. 2009.
Temperature mediated moose survival in northeastern Minnesota. Journal
of Wildlife Management 73:503–510.

Lenarz, M. S., J. Fieberg, M. W. Schrage, and A. J. Edwards. 2010. Living
on the edge: viability of moose in northeastern Minnesota. Journal of
Wildlife Management 74:1013–1023.

McCann, N. P., R. A Moen, and T. R. Harris. 2013. Warm-season
heat stress in moose (Alces alces). Canadian Journal of Zoology 91:893–
898.

Mech, L. D. 1966. The wolves of Isle Royale. National Parks Fauna Series
No. 7. U.S. Government Printing Office, Washington, D.C., USA.

Mech, L. D. 2009. Long-term research on wolves in the Superior National
Forest. Pages 15–34 in A. P., Wydeven E. J., Heske, and T. R., Van
Deelen, editors. Recovery of gray wolves in the Great Lakes region of the
United States: an endangered species success story. Springer, New York,
New York, USA.

Mech, L. D., L. G. Adams, T. J. Meier, J. W. Burch, and B.W. Dale. 1998.
The wolves of Denali. University of Minnesota Press, Minneapolis, USA.

Mech, L. D., S. M. Goyal, W. J. Paul, and W. E. Newton. 2008.
Demographic effects of canine parvovirus on a free-ranging wolf
population over 30 years. Journal of Wildlife Diseases 44:824–836.

Mech, L. D., and P. D. Karns 1977. Role of the wolf in a deer decline in the
Superior National Forest. Research Report. NC-148. United States
Department of Agriculture, Forest Service, North Central Forest
Experimental Station, St. Paul, Minnesota, USA.

Mech, L. D., and M. E. Nelson 2013. Age structure of moose (Alces alces)
killed by gray wolves (Canis lupus) in northeasternMinnesota, 1967–2011.
Canadian Field Naturalist 127:70–71.

Mech, L. D., and R. O. Peterson 2003. Wolf-prey relations. Pages 131–157
in L. D., Mech, and L., Boitani, editors. Wolves: behavior, ecology, and
conservation. University of Chicago Press, Chicago, Illinois, USA.

Morrow-Tesch, J., N. Woolen, and L. Hahn. 1996. Response of gamma
delta T-lymphocytes to heat stress in Bos Taurus and Bos indicus crossbred
cattle. Journal of Thermal Biology 21:101–108.

Murray, D. L., E. W. Cox, W. B. Ballard, H. A. Whitlaw, M. S. Lenarz,
T. W. Custer, T. Barnett, and T. K. Fuller. 2006. Pathogens, nutritional
deficiency, and climate influences on a declining moose population.
Wildlife Monographs 166:1–30.

Nelson,M. E., and L. D.Mech 2006. Causes of a 3-decade dearth of deer in
a wolf-dominated ecosystem. AmericanMidland Naturalist 155:373–382.

Patterson, B. R., J. F. Benson, K. R.Middel, K. J. Mills, A. Silver, andM. E.
Obbard. 2013.Moose calf mortality in central Ontario, Canada. Journal of
Wildlife Management 77:832–841.

Peterson, R. O. 1977. Wolf ecology and prey relationships on Isle Royale.
United States National Park Service Scientific Monograph Series 11:1–
210.

Peterson, R. O., and D. L. Allen 1974. Snow conditions as a parameter in
moose-wolf relationships. Naturaliste Canadien 101:481–492.

Peterson, R. O., R. E. Page, and K.M.Dodge. 1984.Wolves, moose and the
allometry of population cycles. Science 224:1350–1352.

Peterson, R. O., N. J. Thomas, J. M. Thurber, J. A. Vucetich, and T. A.
Waite. 1998. Population limitation and the wolves of Isle Royale. Journal
of Mammalogy 79:487–841.

R Core Team. 2013. R: a language and environment for statistical
computing. R Foundation for Statistical Computing, Vienna, Austria:
<http://www.R-project.org/>. Accessed 20 Jan 2014.

Renecker, L. A., and R. J. Hudson 1986. Seasonal energy expenditure and
thermoregulatory response of moose. Canadian Journal of Zoology
64:322–327.

Renecker, L. A., and R. J. Hudson 1990. Behavioral and thermoregulatory
responses of moose to high ambient temperatures and insect harassment in
aspen dominated forests. Alces 26:66–72.

Severud, W. J., G. D. DelGiudice, and R. G. Wright. 2012. Evaluating the
use of GPS collars to determine moose calving and calf mortalities in
northeastern Minnesota. Summaries of wildlife findings 2012. Minnesota
Department of Natural Resources, St. Paul, USA.

Steinhorst, R. K. andM. D. Samuel. 1989. Sightability adjustment methods
for aerial surveys of wildlife populations. Biometrics 45:415–425.

Mech and Fieberg � Revaluating Minnesota Moose Decline 1149



Testa, J. W., E. F. Becker, and G. R. Lee. 2000. Temporal patterns in the
survival of twin and single moose (Alces alces) calves in southcentral Alaska.
Journal of Mammalogy 81:162–168.

Van Ballenberghe, V., A.W. Erickson, and D. Byman. 1975. Ecology of the
timber wolf in northeastern Minnesota. Wildlife Monographs No 43.

Venables, W. N., and B. D. Ripley 2002. Modern applied statistics with S.
Fourth edition. Springer, New York, New York, USA.

Associate Editor: John Squires.

1150 The Journal of Wildlife Management � 78(7)


